# Libraries
library(DT)
In this section, we aimed to annotate the vitamin D GWAS results (obtained in the GWAS tab). Briefly, we:
FUMA is an online platform that can be used to annotate, prioritize, visualize and interpret GWAS results. It has 2 main functions:
Data upload details
We uploaded the GWAS results to FUMA’s in the SNP2GENE
section. With the upload, we used the following parameters:
All other parameters were left as default.
Using the LDSC software, we conducted partitioned SNP-based heritability analyses by functional category. A total of 53 functional categories (described in Finucane et al. 2018) were used.
In addition, we conducted cell-type-specific SNP-based heritability analyses (as implemented in the LDSC software). These analyses were performed with the “Multi_tissue_gene_expr” gene set, which includes both GTEx data and Franke lab data, as described in Finucane et al. 2018.
# ############################
# Prepare data for partitioned heritability analyses
# ############################
# ----- Download files for partitioned heritability by functional category
cd $bin/ldsc/
## Baseline model LD scores
wget https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_baseline_ldscores.tgz
tar -xzf 1000G_Phase3_baseline_ldscores.tgz
## Regression weights
wget https://data.broadinstitute.org/alkesgroup/LDSCORE/weights_hm3_no_hla.tgz
tar zxf weights_hm3_no_hla.tgz
## Allele frequencies
wget https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_frq.tgz
tar zxf 1000G_Phase3_frq.tgz
# ----- Download files for cell type specific analyses
## https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
## Available gene sets: Multi_tissue_gene_expr, Multi_tissue_chromatin, GTEx_brain, Cahoy, ImmGen, or Corces_ATAC
## LD scores
cts_name=Multi_tissue_gene_expr
wget https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/${cts_name}_1000Gv3_ldscores.tgz
tar -xzf ${cts_name}_1000Gv3_ldscores.tar.gz
# ############################
# Partitioned Heritability by functional category
# ############################
# Directories
ldscDir=$bin/ldsc
results=$WD/results/fastGWA
# Files/settings
prefix=vitD_fastGWA
ldsc_py=$ldscDir/ldsc.py
sumstats=$results/ldscFormat/$prefix.sumstats.gz
baseline=$ldscDir/1000G_EUR_Phase3_baseline/baseline.
weight=$ldscDir/weights_hm3_no_hla/weights.
freq=$ldscDir/1000G_Phase3_frq/1000G.EUR.QC.
output=$results/ldsc/functAnnot.$prefix # Output file
cd $results
module load ldsc
$ldsc_py --h2 $sumstats \
--ref-ld-chr $baseline \
--w-ld-chr $weight\
--overlap-annot \
--frqfile-chr $freq \
--out $output
# ############################
# Cell type specific analyses
# ############################
# Directories
ldscDir=$bin/ldsc
results=$WD/results/fastGWA
# Files/settings
prefix=vitD_fastGWA
ldsc_py=$ldscDir/ldsc.py
baseline=$ldscDir/1000G_EUR_Phase3_baseline/baseline.
weight=$ldscDir/weights_hm3_no_hla/weights.
cts_name=Multi_tissue_gene_expr
sumstats=$results/ldscFormat/$prefix.sumstats.gz
output=$results/ldsc/$prefix.$cts_name # Output file
cd $results
tmp_command="module load ldsc;
$ldsc_py --h2-cts $sumstats \
--ref-ld-chr $baseline \
--ref-ld-chr-cts $ldscDir/$cts_name.ldcts \
--w-ld-chr $weight \
--out $output"
qsubshcom "$tmp_command" 1 10G cts.`basename $output` 24:00:00 ""
# ############################
# Copy results to local computer
# ############################
scp $deltaID:$WD/results/fastGWA/ldsc/vitD_fastGWA.Multi_tissue_gene_expr.cell_type_results.txt $local/results/fastGWA/ldsc/
scp $deltaID:$WD/results/fastGWA/ldsc/functAnnot.vitD_fastGWA.results $local/results/fastGWA/ldsc/
To see the results, log in to FUMA and follow these steps:
SNP2GENE
at the topMy Jobs
on the left panelGo to results
to see the SNP2GENE results, OR on GENE2FUNC
to see the GENE2FUNC results# Load and format results
df=read.table("results/fastGWA/ldsc/functAnnot.vitD_fastGWA.results", h=T, stringsAsFactors=F)
df=df[order(df$Enrichment_p),]
df[,-1]=apply(df[,-1],2,function(x){format(x,digits = 3)})
# Present table
datatable(df,
rownames=FALSE,
extensions=c('Buttons','FixedColumns'),
options=list(pageLength=5,
dom='frtipB',
buttons=c('csv', 'excel'),
scrollX=TRUE),
caption="Partitioned SNP-based heritability by functional annotation")
Columns are: Category, functional annotation; Prop._SNPs, Proportion of SNPs; Prop._h2, proportion of heritability explained by the functional annotation; Prop._h2_std_error, standard error of the heritability; Enrichment, enrichment, calculated as (Prop. heritability) / (Prop. SNPs); Enrichment_std_error, standard error of the enrichment; Enrichment_p, P-value of the enrichment.
# ############################
# Cell type specific SNP h2
# ############################
# Load and format results
cts=read.table("results/fastGWA/ldsc/vitD_fastGWA.Multi_tissue_gene_expr.cell_type_results.txt", h=T, stringsAsFactors=F)
cts=cts[order(cts$Coefficient_P_value),]
cts[,-1]=apply(cts[,-1],2,function(x){format(x,digits = 3)})
# Present table
datatable(cts,
rownames=FALSE,
extensions=c('Buttons','FixedColumns'),
options=list(pageLength=5,
dom='frtipB',
buttons=c('csv', 'excel'),
scrollX=TRUE),
caption="Cell-type-specific SNP-based heritability")